Нарушения в иммунной системе при спиде

ВИЧ: механизм образования иммунодефицита

Начиная с момента инфицирования, вирус непрерывно и быстро реплицируется. И почти сразу же начинается разрушение иммунной системы. Вирусная нагрузка и большая часть процесса разрушения первоначально приходится на лимфоидную ткань . Иммунная система пытается справиться с этим процессом, но безуспешно. Медленно, но неуклонно вирус разрушает ее ключевые компоненты. При этом ВИЧ еще и постоянно видоизменяется. Конечно, что-то погибает под яростной атакой иммунной системы, но что-то прячется в укрытия, переживает опасный момент, а потом, преобразившись, со свежими силами вновь вступает в бой. Постепенно из своего противника ВИЧ превращает дезорганизованную иммунную систему в своего помощника. «Перевербованные» иммунные клетки начинают помогать врагу: они способствуют размножению вируса и порой сами вредят организму, вызывая различные патологии, в частности, производя снаряды-антитела против собственных белков клетки. Мало того, они прекращают борьбу и с другими чужеродными микроорганизмами, останавливая производство клеток-киллеров и антител. Начинает развиваться иммунодефицит .

В организме ВИЧ-инфицированного человека происходит гибель большинства T-хелперов и развитие иммунодефицита.

Известно, что имеет место прямой цитопатический (убивающий клетку) эффект ВИЧ на Т-хелперы. Инфицированный ВИЧ Т-лимфоцит, в котором произошла активация вируса, подвергается разрушению (цитолизу), в этом участвуют и другие механизмы, в частности, процесс апоптоза . Ошибочный запуск апоптоза может происходить из-за действия таких факторов, как избыточная активация В- и Т-лимфоцитов, высокие концентрации ВИЧ- антигена и неадекватное функционирование сигнальной системы цитокинов, что может приводить к гибели даже Т-лимфоцитов, которые не инфицированы ВИЧ. Существенная роль в этом процессе принадлежит цитокинам , которые продуцируются инфицированными ВИЧ макрофагами (таким как фактор некроза опухолей TNF и интерлейкин-1 ).

Развитие ВИЧ-инфекции и гибель лимфоцитов обусловлены дисгармонией взаимодействия цитокинов, вырабатываемых разными видами (субпопуляциями) Т-хелперов (за счет уменьшения продукции T-хелперами 1-го типа интерлейкина-2 и гамма-интерферона и усиления синтеза T-хелперами 2-го типа интерлейкинов-4 и интерлейкин-10 ). Активированные Т-лимфоциты, содержащие на своей поверхности белок-рецептор CD8 , способны затормозить этот процесс посредством секреции своих специфических цитокинов.

Иммунологическая недостаточность при ВИЧ-инфекции связана не только со снижением абсолютного числа CD4-лимфоцитов, но и с нарушением их функции. Так, в начальные сроки течения инфекции, когда еще число Т- лимфоцитов-хелперов достаточно велико, ведущим звеном «поломки» иммунной системы может быть блокада рецепторов CD4 на поверхности клеток вирусным белком gp120. Связывание вирусного белка gp120 с CD4-рецепторами инициирует цепь событий, в результате которых клетка становится неспособной участвовать в полноценном иммунном ответе. В этом патологическом процессе также задействованы разнообразные цитокины.

Деструкция инфицированных ВИЧ T-хелперов осуществляется и за счет слияния клеток, т.е. образования синцитиев — многояерных клеток (в синцитий вовлекаются клетки, инфицированные ВИЧ, на поверхности которых появляются вирусные белки gp120 и gp41, и клетки, необязательно инфицированные ВИЧ, но имеющие на наружной мембране молекулы рецептора CD4). Даже неинфицированные Т-лимфоциты, вовлеченные в такие необычные структуры, становятся не способными выполнять свои защитные функции.

Хотя иммунная система организма быстро реагирует на появление ВИЧ наработкой противовирусных антител и часть вирусов такие антитела способны инактивировать, однако остановить развитие инфекционного процесса иммунная система уже не способна. В результате своей необычайной изменчивости ВИЧ обращает в свою пользу развивающийся специфический иммунный ответ, поскольку образующиеся антитела, нейтрализуя часть вирусов, действуют как факторы отбора, способствующие выживанию наиболее вирулентных клонов (квази-видов), устойчивых к действию этих антител. Дальнейшие циклы выработки специфического иммунного ответа против этих новых квази-видов вируса идут на фоне разрушения иммунной системы.

Происходящая под действием вируса активация B-лимфоцитов приводит к повышению общего содержания иммуноглобулинов, однако нормальное соотношение между разными классами иммуноглобулинов нарушается.

Циркулирующие иммунные комплексы, состоящие из соединенных между собой вирусных антигенов и антител к ним, не только не справляются с вирусом, но даже способствуют распространению инфекции. В их составе вирусы могут беспрепятственно транспортироваться в кровь и ткани, сохраняя способность инфицировать чувствительные к ним клетки.

Кроме того, ВИЧ провоцирует аутоиммунные процессы. Антитела к ВИЧ могут разрушать не только ВИЧ, но и неинфицированные Т-хелперы и другие клетки, на которых «прилеплены» отдельные вирусные белки.

Таким образом, ВИЧ ослабляет как клеточное, так и гуморальное звенья иммунитета.

Начиная с момента инфицирования, вирус непрерывно и быстро реплицируется. И почти сразу же начинается разрушение иммунной системы. Вирусная нагрузка и большая часть процесса разрушения первоначально приходится на лимфоидную ткань . Иммунная система пытается справиться с этим процессом, но безуспешно. Медленно, но неуклонно вирус разрушает ее ключевые компоненты. При этом ВИЧ еще и постоянно видоизменяется. Конечно, что-то погибает под яростной атакой иммунной системы, но что-то прячется в укрытия, переживает опасный момент, а потом, преобразившись, со свежими силами вновь вступает в бой. Постепенно из своего противника ВИЧ превращает дезорганизованную иммунную систему в своего помощника. «Перевербованные» иммунные клетки начинают помогать врагу: они способствуют размножению вируса и порой сами вредят организму, вызывая различные патологии, в частности, производя снаряды-антитела против собственных белков клетки. Мало того, они прекращают борьбу и с другими чужеродными микроорганизмами, останавливая производство клеток-киллеров и антител. Начинает развиваться иммунодефицит .

Нарушения иммунитета при СПИДе

СПИД — одно из наиболее тяжелых заболеваний, разрушающих иммунную систему человека. Хотя основной чертой поражения иммунитета у больных СПИДом является угнетение клеточного иммунитета, в частности избирательный и тяжелый дефект хел- перной субпопуляции ‘Г-клеток, нарушения иммунной системы у этих больных затрагивают как клеточный, так и гуморальный иммунитет.

Лимфопения. Одно из наиболее типичных проявлений пора­жения иммунной системы у больных СПИДом — глубокая лим- фопепия: общее число лимфоцитов обычно меньше 1000, а часто даже меньше 500 в 1 мм1. Она, прежде всего, объясняется сниже­нием содержания СТ)А’-лимфоцитов (меньше 400 в 1 мм3), по сравнению с нормой ( табл. 4).

Уменьшение популяции Т-хелперов/индукторов вызывает С1 шжение регуляторного индекса (

«ВИЧ становится невидимым»

Международная группа ученых при активном участии российских исследователей занимается математическим моделированием вируса иммунодефицита человека. Ученые хотят понять, как именно вирус взаимодействует с организмом человека и как можно бороться с последствиями его негативного воздействия. Геннадий Бочаров, доктор физико-математических наук, ведущий научный сотрудник Федерального государственного бюджетного учреждения науки «Институт вычислительной математики Российской академии наук», и Андреас Мэйерханс, руководитель лаборатории биологии инфекций, профессор ИКРЕА Университета им. Помпеу Фабра в Барселоне, рассказали о том, почему иммунная система не способна к эффективному восстановлению после поражения ВИЧ-инфекцией, а также о том, как можно решить эту проблему.

— Геннадий, Андреас, расскажите, пожалуйста, какие еще исследователи принимают участие в проекте?

Геннадий Бочаров: Помимо меня и моего коллеги Андреаса Мэйерханса, на котором лежит экспериментальная часть исследования, над проектом работает Виталий Вольперт, профессор математики из института Камиля Жордана при Университете Лион-1, он специализируется на математических решениях и моделировании. Мы также сотрудничаем с Пермским краевым центром по профилактике и борьбе со СПИДом и инфекционными заболеваниями —

там проводятся клинические исследования уровня вирусной нагрузки, а также гормональных и иммунных показателей у детей, рожденных от ВИЧ-инфицированных матерей.

Их возглавляет четвертый основной исполнитель проекта — Борис Бахметьев, кандидат медицинских наук, заведующий лабораторией экологической иммунологии Института экологии и генетики микроорганизмов УрО РАН.

— Как вам удалось собрать такой коллектив из ученых, представляющих разные страны?

Геннадий Бочаров: В 2015 году мы подали наш проект на конкурс «Новые подходы к борьбе с инфекционными заболеваниями», проводимый Российским научным фондом. Благодаря поддержке фонда стало возможным сформировать междисциплинарную группу из активно работающих отечественных и зарубежных исследователей для реализации системного подхода к исследованию механизмов хронизации вирусных инфекций человека и животных. Уникальные условия, предоставляемые фондом для изучения этой сложной проблемы, в сочетании с накопленным опытом работы в этой области и налаженным сотрудничеством ключевых исполнителей проекта позволяют решать весьма широкой круг задач: от развития методов многомасштабного математического моделирования регуляторных процессов при инфекции вирусами иммунодефицита человека (ВИЧ) до разработки оптимальных режимов мультимодальных воздействий на динамику инфекции с учетом иммунного статуса пациентов. Участие в проекте аспирантов и магистров дает возможность

подготовить новое поколение исследователей в области математической иммунологии, владеющих необходимым спектром современных инструментов моделирования и опытом проведения исследований в международной конкурентной среде.

— Расскажите, пожалуйста, что уже было сделано в рамках конкретно этого исследования?

Геннадий Бочаров: Сейчас мы сфокусировались на трех фундаментальных аспектах и многофункциональном математическом моделировании. Мы хотим понять фундаментальный механизм, который отвечает за развитие хронических инфекций, и изучить мультимодальные (то есть действующие на различные системы организма) средства контроля, которые можно было бы применять для корректировки нежелательных сдвигов в динамике инфекционных заболеваний.

Существует три различающихся по своей природе способа повлиять на динамику взаимодействия ВИЧ с организмом инфицированного человека.

Другие публикации:  Как помочь ребенку при ангине в 2 года

Первый, достаточно широко доступный, — антиретровирусная терапия. Существует примерно 26 препаратов, которые позволяют воздействовать на различные этапы внутриклеточной репликации и созревания вируса. В целом это хороший способ, но есть некоторое количество побочных эффектов, он дорогой, и не все пациенты придерживаются схем лечения, которые им предлагают, поскольку это существенно нарушает качество их жизни.

— А какие могут быть побочные эффекты?

Андреас Мэйерханс: Например, нарушения в работе сердечно-сосудистой системы, центральной нервной системы, системы регуляции метаболизма.

Лекарства, которые сейчас существуют на рынке, употребляют в различных комбинациях, при этом они воздействуют на разные этапы репликации вируса.

Поэтому одна из наших задач — скомбинировать эти лекарственные средства в одно, спроектировать максимально эффективное терапевтическое средство путем поиска на основе анализа чувствительности моделей синергийных эффектов в их совместном действии. Необходимо сделать так, чтобы результат приема лекарств сохранялся, чтобы симптомы не вернулись в течение одной-двух недель. Это возможно путем изменения баланса ВИЧ и иммунной системы таким образом, чтобы противовирусные иммунные реакции могли ослаблять вирусные процессы до непатогенного уровня.

Геннадий Бочаров: В России вирусом иммунодефицита заражено более миллиона человек, и не все получают дорогостоящее лечение. Вторая проблема состоит в том, что антиретровирусная терапия не обеспечивает реальную полноценную защиту.

Иммунная система не восстанавливается, даже если снижается вирусная нагрузка.

Это происходит потому, что нарушается баланс между различными субпопуляциями клеток иммунной системы, например регуляторными Т-клетками и Т-лимфоцитами хелперами CD4+. Уровень активности иммунных процессов определяется балансом активирующих и супрессирующих сигналов. При ВИЧ-инфекции усиливается экспрессия рецепторов, которые отвечают за передачу сигналов на снижение функциональной активности или даже гибель клеток.

Поэтому второй блок подходов к лечению связан с применением иммуномодулирующих препаратов, которые дают различным компонентам иммунной защиты или отдельным субпопуляциям клеток возможность стимулировать или подавлять специфические звенья иммунного реагирования и тем самым влиять на динамику системы «ВИЧ – организм человека».

— То есть частичное восстановление иммунной системы становится возможным?

Геннадий Бочаров: Да, при данном подходе частичное восстановление, безусловно, происходит. Но полного восстановления нет, и более того, антиретровирусная терапия не обеспечивает восстановление численности CD4+ Т-хелперов. Это наглядно демонстрируют исследования, проводимые нашими коллегами, с которыми мы активно сотрудничаем, — академиком Валерием Черешневым и д.м.н. Константином Шмагелем (г. Пермь) по лечению пациентов, больных ВИЧ и гепатитом C.

— А почему функции иммунной системы не восстанавливаются, если снижена вирусная нагрузка?

Геннадий Бочаров: Тут все дело в глубине поражений и изменений в организме человека при попадании и развитии ВИЧ-инфекции. Вирус иммунодефицита поражает клетки иммунной системы человека, которые находятся в лимфоидных органах, в частности в лимфоидной ткани кишечника, селезенке и лимфоузлах, коих в организме насчитывается более 500.

— И что происходит в этих органах?

Геннадий Бочаров: Лимфоидные органы состоят из стромы, которая формируют каркас, в конкретном случае — из фибробластных ретикулярных клеток (ФРК). Когда Т-лимфоцит CD4+ или CD8+ попадает в лимфатический узел, ему нужно вступить в контакт с клетками стромы. Если лимфоцит получает сигнал от ФРК, то он выживает, а если сигнала нет, то клетка гибнет.

В ходе инфицирования ВИЧ разрушается эпителий стенок кишечника, бактериальные продукты проникают в кровь и вызывают системное хроническое воспаление.

В иммунной системе есть механизмы, которые блокируют хроническую активацию, — это регуляторные Т-клетки, упомянутые ранее. В числе других процессов они стимулируют синтез коллагена фибробластными ретикулярными клетками. Коллагеновые нити частично блокируют свободную миграцию клеток, транспорт цитокинов, и иммунная активность в целом снижается. И фиброз, который имеет место при ВИЧ-инфекции, рассматривается как одна из ключевых причин, по которой полное восстановление иммунитета невозможно. Это ставит задачу анализа с помощью моделей и антифиброзной терапии как компонента мультимодальных воздействий. Для исследования структуры и функции лимфатических узлов при экспериментальных вирусных инфекциях мы также сотрудничаем с Институтом иммунобиологии кантонального госпиталя города Санкт-Галлен (Швейцария), руководимым профессором Б. Людвигом.

Наконец, ключевая проблема лечения ВИЧ-инфекции состоит в том, что вирус полностью интегрируется в человеческую хромосому, становится невидимым, пока клетка не активируется.

А еще он способен видоизменяться со временем путем процессов мутирования и рекомбинации геномов, что делает вирус движущейся мишенью для иммунной системы в пространстве антигенных признаков. Соответственно, и течение болезни протекает у всех по-разному.

— Как вы предлагаете решить эту проблему?

Геннадий Бочаров: Это подводит к необходимости теоретически исследовать третий способ повлиять на динамику взаимодействия ВИЧ с организмом. С помощью создания многофункциональной математической модели мы можем изучить, насколько иммунная система чувствительна к внешним воздействиям, а в будущем —

спроектировать эффективный комбинированный препарат с минимальной концентрацией лекарственных компонентов,

которые действуют на различные звенья инфекции и иммунофизиологических процессов и обладают синергийным эффектом.

Андреас Мэйерханс: Это очень важно, потому что уменьшение уровня вирусной нагрузки антиретровирусными лекарствами связано с зависимостью состояния организма от препарата, и прекращение приема вызовет рецидив заболевания. К тому же лекарства могут иметь побочные эффекты, как отмечалось выше.

— А как проходила экспериментальная часть исследования?

Андреас Мэйерханс: Мы рассматривали инфекцию вируса милимфоцитарного хориоменингита (ВЛХМ) мышей, имеющую много общих закономерностей в динамике с ВИЧ-инфекцией.

— Поэтому для клинической части исследования был выбран именно ВЛХМ, а не, например, вирус иммунодефицита обезьян?

Геннадий Бочаров: ВЛХМ — экспериментальный вирус, который часто используют в исследованиях в иммунологии, своеобразный «золотой стандарт».

Андреас Мэйерханс: Лабораторные исследования мы начали проводить около трех лет назад.

У нас собраны данные транскриптомного анализа по динамике активности около 11 тыс. генов при остром и хроническом вариантах течения инфекции.

Программисты-биоинформатики проанализировали имеющиеся данные, и по итогам работы построены математические модели динамики экспрессии генов. В Барселоне, кстати, мы контактируем с двумя госпиталями, а одна из моих бывших аспиранток принимает непосредственное участие в мониторинге испытаний вакцин. Это дает нам дополнительную информацию, которую мы используем при создании математических моделей.

— То есть в проекте участвуют молодые ученые?

Геннадий Бочаров: Да, в исследовании задействованы шесть молодых специалистов из России — один из ИВМ РАН (к.ф.-м.н. А.А. Данилов), трое аспирантов из МГУ имени М.В. Ломоносова (В.В. Желткова, А.А. Кислицын, Р.С. Савинков), два магистра из МФТИ (Д.С. Гребенников) и МГУ имени М.В. Ломоносова (Р.М. Третьякова), а также аспирант из Лиона (Анасс Бучнита). Мы надеемся, что в течение трех следующих лет они станут по-настоящему опытными исследователями в области математической иммунологии и внесут свой вклад в развитие научной школы, созданной академиком Г.И. Марчуком.

Следует также дополнить, что мы активно сотрудничаем с коллегами из научных институтов Новосибирска (д.б.н. С.И. Бажан, д.б.н. В.А. Лихошвай, д.б.н. Т.М. Хлебодарова, к.ф.-м.н. И.А. Гайнова) в области моделирования внутриклеточного онтогенеза ВИЧ, Екатеринбурга (д.ф.-м.н. А.В. Ким) — в задачах оптимального управления динамикой ВИЧ-инфекции и Москвы (д.б.н. Э.В. Карамов) — по анализу генетических особенностей ВИЧ-инфекции в РФ.

— Расскажите, пожалуйста, о ваших дальнейших научных планах.

Геннадий Бочаров: К концу года мы планируем разработать многомасштабную модель ВИЧ-инфекции и исследовать на ее основе факторы, лежащие в основе фенотипически различных вариантов течения ВИЧ-инфекции и несостоятельности иммунного ответа.

Планируем сдать в печать книгу о математическом моделировании в иммунологии.

Вообще математическое моделирование сложных систем является востребованным методом не только в иммунологии или в биологии, поэтому обучение студентов их содержательному моделированию — актуальная задача.

ВИЧ-инфекция и иммунная система: их взаимодействие и последействие

ВИЧ-инфекция – болезнь, вызываемая ретровирусом, поражающим клетки иммунной, нервной и других систем и органов человека. Для нее характерно длительное хроническое прогрессирующее течение, завершающееся развитием СПИДа и сопровождающих его оппортунистических заболеваний [1].

История открытия
В 1981 г. Центр по контролю над заболеваниями США (CDC-Centers for Disease Control and Prevention) сообщил о редкой инфекции – пневмоцистной пневмонии у мужчин-гомосексуалистов. Другие исследователи отметили сочетание необычной инфекции с развитием опухолей, особенно саркомы Капоши [1].
В ходе иммунологических исследований этих больных установлено наличие специфического повреждения Т-лимфоцитов, преимущественно Т-хелперов (CD4). В последующем были описаны множественные оппортунистические (вирусные, грибковые, микобактериальные и протозойные) инфекции, которые обычно характерны для лиц с иммуносупрессией [1].
В 1983 г. Barre-Sinoussi в лаборатории Люка Монтаньи Института Пастера в Париже из лейкоцитов крови пациента (официанта-гомосексуалиста), у которого обнаруживалось стойкое увеличение лимфатических узлов нескольких групп, выделил человеческий Т-клеточный лимфотропный вирус (Limphadenopathy Associated Virus – LAV). B том же году Роберт Гало и его коллеги открыли Т-лимфотропный вирус ІІІ типа (HTL V 3). В последующем оказалось, что эти вирусы идентичны. Он получил название «вирус иммунодефицита человека» – ВИЧ (Human Immunodeficiency Virus – HIV) [1, 2].
Этиология
ВИЧ относится к подсемейству лентивирусов семейства ретровирусов. Известны два типа вируса: ВИЧ-1 и ВИЧ-2. С помощью электронной микроскопии показано, что оба типа вируса имеют сходную структуру. В то же время они имеют отличия – по молекулярной массе белков и некоторым дополнительным генам [4, 7, 8].

Другие публикации:  Если приснились куры и петухи

Морфология возбудителя
Характерными особенностями ретровирусов являются уникальное строение генома и наличие обратной транскриптазы (РНК-зависимая ДНК-полимераза или ревертаза). В связи с наличием фермента семейство и получило свое название (от англ. retro – обратно).
Полная вирусная частица имеет сферическую форму диаметром 100-120 нм [1, 2]. Вирион состоит из сердцевины (нуклеокапсид) , окруженной наружной мембраной (суперкапсид), и матрикса (основное содержимое) . Ядро включает геном, внутренние белки р7 и р9 и ферменты – обратную транскриптазу и эндонуклеазу.
Нуклеокапсид имеет цилиндрическую или коническую форму и образован белками р18 и р24. Геном образуют две нити РНК, связанные белками р6 и р7. Белок р17 создает прослойку (матрикс) между ядром и внешней оболочкой [1-3].
Наружная мембрана, или суперкапсид , состоит из двухслойной липидной оболочки, пронизанной 72 гликопротеиновыми шипами. В составе каждого шипа – 3 пары гликопротеинов gp41 и gp120. Гликопротеины gp120 локализованы в выступающей части шипа и взаимодействуют с молекулами CD4 на мембранах клеток. Гликопротеины gp41 содержатся внутри оболочки и обеспечивают ее слияние с клеточной мембраной.

Геном вируса
В составе генома находятся две одинаковые молекулы РНК. Каждая из этих молекул состоит из 9 749 нуклеотидных пар и включает девять генов. На обоих концах молекулы РНК находятся повторяющие друг друга последовательности, не кодирующие никаких белков и известные под названием длинных концевых повторов LTR (long terminal repeat) [3] (рис. 1).
Из девяти генов три являются структурными, характерными для всех ретровирусов: gag – group-specific antigens, pol – polymerasae, env – envelope; шесть – регуляторными: tat – transactivator of transcription, rev – regulator of expression of virus proteins, vif – virion infectivity factor, nef – negative regulatory factor. Также существуют vpr и vpu для ВИЧ-1, vpx для ВИЧ-2 с мало изученной функцией [1-3].
Каждый ген выполняет соответствующие функции:
•gag – кодирует структурные протеины;
•pol – вирусные энзимы: протеазу, обратную транскриптазу и интегразу;
•env – гликопротеины оболочки;
•tat – необходим для репликации почти во всех культурах клеток;
•rev – обеспечивает транспорт компонентов вируса из ядра и переключение синтеза регуляторных белков на синтез структурных;
•nef – подавляет экспрессию молекул CD4 на поверхности инфицированных клеток, а также может угнетать активацию Т-лимфоцитов;
•vpr – необходим для репликации вируса в непролиферирующих клетках, в том числе в макрофагах;
•vpu – важен для процесса отпочковывания вируса из клетки;
•vif – отвечает за способность ВИЧ к инфицированию, а также играет важную роль в репликации вируса;
•vfu – ответственен за сборку вирусных частиц [1-3, 7].

Основные механизмы взаимодействия ВИЧ и клеток-мишеней
Основные этапы взаимодействия ВИЧ и клеток-мишеней изображены на рис. 2.

Клетки-мишени
ВИЧ обладает тропностью к определенным типам клеток, что обусловлено наличием на поверхности клеток-мишеней рецептора для данного вируса. Рецепторную функцию могут выполнять различные структуры (лиганды), углеводные компоненты белков и липидов [5].
Рецепторы, независимо от биохимического строения, имеют общую структурную характеристику: состоят из трех участков , название которых обусловлено их локализацией:
•внеклеточного;
• внутримембранного;
•погруженного в цитоплазму [5].
В 1984 г. стало известно, что молекула CD4 является главным и необходимым рецептором для ВИЧ-1 и ВИЧ-2 [1, 7].
CD4 – это гликопротеид, по своему строению имеющий гомологии с определенными участками иммуноглобулинов. Аналогичные гомологии имеет и белок вируса gp120, что и определяет его тропность [2, 3, 5].
Рецепторы CD4 на своей поверхности содержат следующие клетки: CD4+-лимфоциты, CD8+-лимфоциты, дендритные клетки, моноциты, эозинофилы, мегакариоциты, нейроны, микроглии, сперматозоиды [3, 5].

Хемокины и их роль в патогенезе ВИЧ-инфекции
Наружная клеточная мембрана может иметь несколько рецепторов для различных типов вируса, но именно конкретный вирус взаимодействует с определенным рецептором [5].
Опытным путем установлено, что одних CD4-рецепторов для проникновения вируса в клетку недостаточно. Был сделан вывод о существовании дополнительных рецепторов – корецепторов [3, 7].

Рецептор ССR 5 является природным лигандом хемокина [3].
Хемокины – это низкомолекулярные молекулы, которые продуцируются в основном клетками воспаления (лимфоциты, макрофаги, гранулоциты и эозинофилы) в ответ на стимуляцию антигенами, митогенами и другими активаторами. Они обеспечивают направленное движение клеток, имеющих хемокиновые рецепторы. Этот феномен называется хемоаттракцией [1, 3].
С биологической точки зрения, хемокины представляют собой белки, имеющие в составе 68-120 аминокислот. В зависимости от порядка цистеновых последовательностей хемокины делятся на С-Х-С (α-хемокины), С-С (β-хемокины) и С-хемокины. Хемокины гомологичны по структуре между собой и могут связываться с одними и теми же рецепторами [7].
В табл. 1. приведены рецепторы, их лиганды и клетки, несущие рецепторы (по C.R. Machery, с изменениями) [1].
Хемокиновый рецептор CXCR 4 обеспечивает проникновение ВИЧ, тропного к Т-клеткам, CCR 2 – к макрофагам, CCR 3 – к эозинофилам, CCR 5 – к Т-хелперам 1 типа. Эотаксин прерывает связь вируса с рецептором CCR 3, что указывает на более важную роль последнего в патогенезе ВИЧ-инфекции. Природные лиганды (MIP-1 (б, в) и RANTES блокируют макрофаготропную ВИЧ-инфекцию, но не инфекцию, вызванную вирусами, тропными к Т-клеткам [1].

Иммунопатогенез
Дендритные клетки, макрофаги, В-лимфоциты – основные антигенпрезентирующие клетки иммунной системы. Клетки Лангерганса (специализированные клетки кожи и слизистых оболочек) одними из первых сталкиваются с ВИЧ в слизистых оболочках и, согласно своему предназначению, захватывают, перерабатывают и переносят его на свою поверхность. После этого они мигрируют в лимфоидную ткань, где представляют антиген Т-лимфоцитам, в результате чего происходит активация последних [6, 7].
Оболочечный белок gp120 ВИЧ-1 связывается с CD4, а также хемокиновыми рецепторами, и начинается сложный биологический процесс взаимодействия вируса с клеткой, заканчивающийся синтезом нового поколения вирионов [1].
Процесс проникновения вируса проходит три стадии:
•присоединение (распознавание и связывание с рецепторами);
•изменение конформации интегральных белков;
•собственно слияние мембран.
Вирус и клетка-мишень сближаются в пространстве, после чего вирус распознает специфические для него рецепторы. Обязательным условием является наличие двух рецепторов, причем они должны быть расположены достаточно близко друг к другу.
CD4-связывающий участок оболочечного белка gp120 соединяется с CD4-рецептором клетки-мишени. Этот шаг незамедлительно приводит к конформационным изменениям, а отдельные участки белков меняют свое расположение относительно друг друга. В результате открывается и становится доступным для взаимодействия второй участок gp120, предназначенный для связывания с корецептором CCR 5.
На следующем этапе происходит взаимодействие CCR 5 с CCR 5-связывающим участком gp120. После завершения этого процесса начинаются конформационные изменения gp41 [3]. Внемембранная часть gp41 включает две α-спирали: HR 1 и HR 2, которые поочередно начинают «закручиваться». В результате молекула gp41 сильно укорачивается, сближая вирусную и клеточную мембраны. Конформационные изменения сопровождаются высвобождением энергии, которая инициирует смешивание липидных слоев. В процессе слияния участвуют 4-6 молекул CCR 5, много молекул CD4 и 3-6 Env-тримеров.
После слияния вирусная мембрана утрачивает белки gp41 и gp120. РНК вируса в окружении нуклеокапсидных и капсидных белков попадает в клетку, и вирион «приступает» к процессу «раздевания». В результате ослабления межмолекулярных связей оболочки вируса разрушаются. Под действием фермента МАР-киназы происходит фосфорилирование матриксного белка.
После «раздевания» содержимое капсида, и прежде всего РНК, поступает в цитоплазму клетки, и начинается обратная транскрипция вирусной РНК с участием фермента обратной транскриптазы.
В цитоплазме информация с вирусной РНК посредством обратной транскриптазы (ревертазы) переписывается на ДНК. Вначале образуется однонитевая структура. Образование второй нити ДНК обеспечивает та же обратная транскриптаза. В инфицированных клетках обнаруживают три вида провирусной ДНК: линейную и две кольцевые, имеющие на своих концах один или два LTR.
Провирусная ДНК, сформированная в цитоплазме, транспортируется в ядро клетки в составе нуклеопротеинового комплекса. Ядерная ДНК защищена двуслойной мембраной. Она является барьером для большинства ретровирусов. Во время митоза мембрана растворяется, и ядро становится доступным для внедрения вирусного генетического материала.

На следующем этапе провирусная ДНК встраивается в хромосомный аппарат клетки. Фермент интеграза на трех концах молекулы провируса удаляет по два нуклеотида, а также надрезает хромосомную ДНК. Клеточные ферменты репарации ДНК «убирают» лишние нуклеотиды на пяти концах провируса, достраивают «пробел» и с помощью интегразы сшивают концы провирусной и хромосомной ДНК. После встраивания провирусная ДНК служит матрицей для транскрипции.
Транскрипция включает три основные фазы:
•инициацию (опознание участка начала синтеза мРНК);
•элонгацию (удлинение цепи мРНК путем присоединения нуклеотидов);
•терминацию (остановка синтеза мРНК).
Фермент РНК-полимераза, используя провирусную ДНК в качестве матрицы, синтезирует матричную вирусную РНК (РНК-копия). Вновь образованная мРНК ВИЧ-1 транспортируется из ядра в цитоплазму. Перед этим она должна пройти в ядре процесс созревания, или процессинга.
Последовательности ДНК (а значит, и ее РНК-копии) не равнозначны по своей кодирующей способности: среди них выделяют значащие фрагменты (экзоны) и промежуточные (интроны). Во время созревания мРНК интроны «вырезаются» специальными ядерными ферментами, остаются в ядре и там разрушаются, а экзоны «сшиваются». Этот процесс называется «сплайсинг». Окончательное формирование мРНК происходит после присоединения последовательности из аденозинтрифосфатов.
Созревшая мРНК экспортируется в цитоплазму клетки, где выполняет две функции: служит матрицей для трансляции (синтеза белков) и встраивается в новые вирусные частицы в качестве геномной РНК.
Вирусные белки в процессе трансляции синтезируются точно так же, как и клеточные белки.
Сборка новых вирусных частиц происходит вблизи плазматической мембраны, после этого они отпочковываются от клеточной поверхности [3].
После ознакомления с механизмами взаимодействия вируса с клетками человеческого организма возникает вопрос: «Что в дальнейшем происходит с ВИЧ-инфицированной клеткой? По какому пути развиваются взаимоотношения клетки и вируса?»
В- и Т-лимфоциты – главные эффекторные клетки антиген-специфического иммунного ответа. Их функция зависит от дендритных клеток. Распознавание антигена Т-лимфоцитами возможно только после предварительной переработки и представления пептидных фрагментов антигена дендритными клетками. С этого момента запускается каскад иммунопатологических реакций, характеризующихся нарушением работы иммунной системы, который сопровождается развитием клинических симптомов [6, 7].
Вирусная инфекция оказывает хроническое возбуждающее и стимулирующее действие на иммунную систему [3].

Другие публикации:  Костно-суставной туберкулез диагностика

Механизмы уменьшения количества Т-лимфоцитов
Из вышесказанного становится понятно, что ключевым фактором в патогенезе ВИЧ-инфекции является уменьшение популяции CD4+-лимфоцитов [2, 3].
Исчезновение лимфоцитов CD4 из кровотока имеет сложный механизм и предусматривает гибель клеток, недостаточную выработку новых и перераспределение имеющихся лимфоцитов в лимфоидные ткани [6-8].

Только 1% Т-клеток погибает, будучи инфицированными ВИЧ-1, остальные 99% – по другим причинам. Одной из причин внутреннего свойства можно назвать повреждение мембраны клетки, происходящее при почковании вирусных частиц.
По мере размножения вируса в цитоплазме происходит накопление вирусных белков и нуклеиновых кислот. Вновь образованный вирус живет за счет клетки и использует для собственного развития все ее ресурсы. Итогом этого становится ускоренное истощение запасов питательных веществ и энергоресурсов клетки [3].
Взаимодействие gp120 ВИЧ-1 с мембраной CD4+-лимфоцитов приводит к программированной клеточной гибели – апоптозу зрелых CD4+-лимфоцитов или CD34+-гемопоэтических клеток-предшественников даже без инфицирования их вирусом [2, 4].
Клетки Т-sup, ЕK-клетки лизируют инфицированные CD4+-лимфоциты, а вместе с ними и вирус; этот прямой путь называют еще цитотоксическим [3].
ВИЧ-инфицированные клетки в результате слияния мембран образуют группы (количество клеток в них доходит до 500), получившие название синцития. На поверхности клеток определяется молекула белка Env, который имеет сродство к СD4-рецептору и формирует «мостики» между соседними лимфоцитами. За сближением клеток следует их слияние. Клетки, попадающие в такую сеть, становятся легкодоступными для вируса, а также теряют свою функциональную активность и могут уничтожаться организмом [2, 3].

Более 99% этих вирусных частиц продуцируют CD4+-лимфоциты (около 2,6х109 клеток ежедневно), остальная часть приходится на долю макрофагов. Инфицированные Т-клетки живут не более 3 дней, а значит, миллиарды новых CD4+-лимфоцитов должны восполнять нехватку приблизительно с такой же скоростью. Около 2% этих клеток попадает в кровь, а остальные населяют собой лимфоузлы и другие ткани. Это происходит в течение длительного времени, пока иммунная система в состоянии поддерживать относительное равновесие между разрушением и синтезом инфицированных клеток (продолжительность составляет в среднем 11 лет). При естественном течении ВИЧ-инфекции количество лимфоцитов CD4 постепенно снижается, в то время как концентрация ВИЧ в крови постепенно увеличивается. На определенном этапе иммунная система уже не в состоянии самостоятельно восполнять свои клетки, что приводит к размножению вируса и развитию иммунодефицита [2, 3].
Количественные изменения в работе клеточного звена иммунитета неизбежно сопровождаются нарушениями качественного характера – снижением функциональной активности Т-лимфоцитов.

Клеточный иммунный ответ
В зависимости от секретируемых цитокинов Т-хелперы делятся на два типа. Т-хелперы 1 типа вырабатывают в основном интерлейкин 2 (ИЛ-2) и интерферон-α. Эти цитокины поддерживают эффекторные функции иммунной системы (цитотоксических Т-лимфоцитов, ЕK-лимфоцитов, макрофагов). Т-хелперы 2 типа вырабатывают преимущественно ИЛ-4, ИЛ-5, ИЛ-6 и ИЛ-10, которые активируют гуморальный ответ [7]. Т-лимфоциты утрачивают способность продуцировать Т-клеточный ростовой фактор – ИЛ-2. Вследствие этого нарушается дифференцировка Т-клеток в различные функциональные субпопуляции – СD4 и CD8, а также активность ЕК-клеток [1].
ИЛ-6 играет главную роль в терминальной В-клеточной дифференцировке в иммуноглобулинсекретирующие клетки. Оболочечный белок вируса действует напрямую на CD4 клоны Т-клеток, индуцируя синтез ИЛ-6 и увеличивая его продукцию [1, 3].
Уменьшение субпопуляции Т-хелперов 1 типа сопровождается снижением выработки α- и γ-интерферона. В свою очередь, функциональная активность ЕK-лимфоцитов находится под непосредственным влиянием таких цитокинов, как ИЛ-2 и интерферон-γ [1].
В процессе развития ВИЧ-инфекции не только поражаются лимфоциты с CD4+-фенотипом, но и нарушается функция лимфоцитов с CD8-фенотипом, то есть Т-супрессоров. Белок вируса р15 оказывает супрессивное действие на продукцию Т-клетками ИЛ-2 и γ-интерферона.
С ИЛ-2 и другими цитокинами тесно связана функция цитотоксических Т-лимфоцитов, ответственных за противовирусную и противоопухолевую защиту организма [4].

Гуморальный иммунный ответ
Роль гуморального ответа в течение ВИЧ-инфекции мало изучена. ВИЧ влияет на функциональную активность В-лимфоцитов, увеличивая синтез иммуноглобулинов и особенно продукцию IgG. Большинство антител, несмотря на присутствие вируса, являются неспецифическими (лишь около 5% от всех иммуноглобулинов – специфические) и их вырабатывается значительно больше, чем нормальными В-клетками. Такая гиперпродукция иммуноглобулинов нарастает в процессе развития инфекции [1, 6, 7].

Моноциты и макрофаги
Тканевые макрофаги у ВИЧ-инфицированных часто содержат вирус, и поскольку они не погибают от его действия, они могут выступать источником данного вируса в организме. У макрофагов снижается хемотаксис, продукция активных форм кислорода, антибактериальная токсичность [1, 6, 7].
Таким образом, поражение иммунной системы при ВИЧ-инфекции носит системный характер, проявляясь глубокой супрессией Т- и В-звеньев клеточного иммунитета. В процессе развития ВИЧ-инфекции происходят закономерные изменения гуморального иммунитета, факторов неспецифической защиты, функциональной активности лимфоцитов и моноцитов/макрофагов. Повышается уровень сывороточных иммуноглобулинов, циркулирующих иммунных комплексов. Наряду с дефицитом CD4+-лимфоцитов в динамике заболевания нарастает функциональная недостаточность СD8+-лимфоцитов, ЕK-клеток, нейтрофилов. Нарушение иммунного статуса клинически проявляется инфекционным, аллергическим, аутоиммунным и лимфопролиферативным синдромом иммунологической недостаточности – синдромом, свойственным болезни иммунных комплексов. Все это определяет клинику ВИЧ-инфекции [4].
В табл. 2 продемонстрирована зависимость развития инфекционных заболеваний от уровня CD4+-лимфоцитов.
Мы описали механизмы взаимодействия ВИЧ с клетками человеческого организма. Следствием влияния вируса является нарастающее угнетение функции иммунной системы с последующим развитием оппортунистических инфекций (вирусной, бактериальной, грибковой, протозойной этиологии).
Литература
1. Рахманова А.Г., Виноградова Е.Н., Воронин Е.Е., Яковлев А.А. ВИЧ-инфекция. – СПб., 2004. – 696 с.
2. Покровский В.В., Ермак Т.Н., Беляева В.В., Юрин О.Г. ВИЧ-инфекция: клиника, диагностика и лечение. – М.: Медицина, 2000. – 496 с.
3. Бобкова М.Р. Иммунитет и ВИЧ-инфекция. – М.: Олимпия Пресс, 2006. – 240 с.
4. Чеснокова Н.П., Михайлов А.В. и др. Инфекционный процесс. – М.: Академия естествознания, 2006. – 280 с.
5. Шувалова Е.П. Инфекционные болезни. – М.: Медицина, 2001. – 324 с.
6. Lederman M., Rodriguez B., Sieg S. HIV Insite Knowledge Base Chapter. Immunopathogenesis of HIV Infection. – San Francisco, 2004.
7. Хофман Ч., Кампс Б., Рокштро Ю. Лечение ВИЧ-инфекции. – Инфосеть «Здоровье Евразии», 2005. – 565 с.
8. Антоняк С.М., Щербинська А.М. Клінічний протокол антиретровірусної терапії ВІЛ-інфекції у дорослих і підлітків. – «Міжнародний альянс з ВІЛ/СНІД в Україні», 2004. – 112 с.